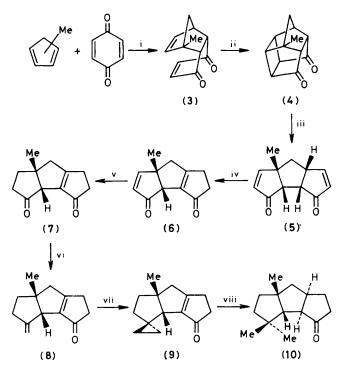

A Total Synthesis of (\pm) - $\Delta^{\mathfrak{g}(12)}$ -Capnellene

Goverdhan Mehta,* D. Sivakumar Reddy, and A. Narayana Murty School of Chemistry, University of Hyderabad, Hyderabad 500 134, India


A novel synthesis of the linearly fused tricyclopentanoid marine natural product (\pm) - $\Delta^{9(12)}$ -capnellene (2) from the readily available starting materials methylcyclopentadiene and *p*-benzoquinone is described.

The soft coral *Capnella imbricata* is an unusually rich source of polyhydroxylated sesquiterpenes (1a-e), known by the generic name capnellanes and possessing the novel tricyclo-[6.3.0.0^{2,6}]undecane (triquinane) carbon framework.¹ The synthesis of the simplest member of the capnellane family and the presumed biogenetic precursor of the 'capnellanols' (1a-e), the tricyclic hydrocarbon (\pm) - $\Delta^{9(12)}$ -capnellene (2)^{1e} has aroused intense interest recently.^{2,3} Here we report a short synthesis of the marine natural product (2) by a flexible strategy that can be adapted to make more complex members of the capnellane group.

Diels-Alder cycloaddition of methylcyclopentadiene isomers and *p*-benzoquinone gave a mixture of adducts from which the desired tricyclic *endo*-adduct (3), m.p. 71 °C [¹H n.m.r., δ 1.56 (3H, s); ¹³C n.m.r. δ 57.7 p.p.m., (s)] could be isolated in 70% yield. Irradiation of (3) in ethyl acetate in a Pyrex vessel with a 450 W lamp furnished the pentacyclic dione (4), m.p. 176 °C (75%) (Scheme 1). Thermolysis of (4) under flash vacuum pyrolysis conditions gave the *cis,cisoid,cis*triquinane bis-enone (5), m.p. 93–94 °C in 60% yield.⁴ The structure of (5), which possesses 12 of the 15 carbon atoms of the capnellane framework, was elucidated from its ¹³C n.m.r. spectrum [δ 207.2(s), 207.1(s), 170.3(d), 165.7(d), 132.8(d), 130.4(d), 59.9(d), 56.6(s), 52.7(d), 49.6(d), 38.3(t), and 26.8 p.p.m. (q)] and from other spectral data.

b; $R^1 = R^3 = H$, $R^4 = R^2 = R^5 = OH$ c; $R^4 = R^2 = R^3 = H$, $R^1 = R^5 = OH$ d; $R^4 = R^2 = H$, $R^1 = R^5 = R^3 = OH$ e: $R^4 = R^1 = R^3 = H$, $R^2 = R^5 = OH$ Treatment of the *cis,cisoid,cis*-bis-enone (5) with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) resulted in the relocation of the double bond to form a new bis-enone (6), m.p. 97–98 °C [¹³C n.m.r. δ 204.6(s), 201.2(s), 183.8(s), 168.9(d), 147.6(s), 129.8(d), 57.5(s), 57.1(d), 42.6(t), 39.6(t), 25.3(t), and 25.0 p.p.m. (q)] in >90% yield. Catalytic hydrogenation of (6) gave (7) which was subjected to a selective Wittig reaction at

Scheme 1. i, Tetrahydrofuran, room temp., 70%; ii, hv, ethyl acetate, 75%; iii, 530 °C, column packed with quartz chips at 0.1 mmHg, 60%; iv, DBU-CH₂Cl₂, reflux, >90%; v, H₂-10% Pd/C in ethyl acetate, 80%; vi, Ph₃P⁺-Me I⁻-t-C₅H₁₁O⁻Na⁺, toluene, 30–40%; vii, CH₂I₂-Zn/Cu couple, 50%; viii, H₂-PtO₂ in MeCO₂H, 3 atm, 60%.

the saturated carbonyl group to yield (8) [¹H n.m.r. δ 5.2 (1H, t, J 1 Hz) and 4.96 (1H, t, J 1 Hz); ¹³C n.m.r. δ 203.3, 183.3, 152.1, 148.6, 107.9, 56.6, 55.9, 46.4, 40.8, 40.4, 33.5, 27.3, and 25.7 p.p.m.]. Quaternization at C-1 was achieved through a cyclopropanation-hydrogenolysis sequence.⁵ Simmons-Smith reaction of (8) proceeded satisfactorily to give the enone (9) with the desired spiro-fused cyclopropane ring. The *gem*dimethyl group and the required *cis,transoid,cis*-stereochemistry of the capnellane system were now generated in one step through catalytic hydrogenation of (9) to give the known ketone nor-capnellanone (10).[†] Since (10) has been previously² converted into (2) through Wittig olefination, our synthesis of (10) completes the total synthesis of (2) in eight steps from the available starting materials methylcyclopentadiene and *p*benzoquinone.

We thank Professor R. D. Little, University of California, Santa Barbara, for the comparison spectra of nor-capnellanone.

Received, 12th April 1983; Com. 460

References

- (a) M. Kaisin, Y. M. Sheikh, L. S. Durham, C. Djerassi, B. Tursch, D. Daloze, J. C. Braeckman, D. Losman, and R. Karlsson, *Tetrahedron Lett.*, 1974, 2239; (b) Y. M. Sheikh, G.Singy, M. Kaisin, H. Eggert, C. Djerassi, B. Tursch, D. Daloze, and J. C. Braeckman, *Tetrahedron*, 1976, 32, 1171; (c) Y. M. Sheikh, C. Djerassi, J. C. Braeckman, D. Daloze, M. Kaisin, B. Tursch, and R. Karlsson, *ibid.*, 1977, 33, 2115; (d) M. Kaisin, B. Tursch, J. P. Declercq, G. Germain, and M. Van Meerssche, *Bull. Soc. Chim. Belg.*, 1979, 88, 253; (e) E. Ayanoglu, T. Gebreyesus, C. M. Beechan, C. Djerassi, and M. Kaisin, *Tetrahedron Lett.*, 1978, 1671.
- 2 For the total synthesis of $\Delta^{9(12)}$ -capnellene (2), see K. E. Stevens and L. A. Paquette, *Tetrahedron Lett.*, 1981, 4393; R. D. Little and G. L. Carroll, *ibid.*, p. 4389; W. Oppolozer and K. Battig, *ibid.*, 1982, 4669; J. Huguet, M. Karpf, and A. S. Dreiding, *Helv. Chim. Acta*, 1982, 65, 2413.
- 3 Biogenetically patterned approaches to the capnellane ring system have been reported by A. M. Birch and G. Pattenden, *Tetrahedron Lett.*, 1982, 991; T. Fujita, T. Ohtuska, H. Shirahama, and T. Matsumoto, *ibid.*, p. 4091. For a synthesis of $\Delta^{\Theta(12)}$ -capnellene-8 α ,10 α -diol see G. Pattenden and S. J. Teague, *Tetrahedron Lett.*, 1982, 5471.
- 4 G. Mehta, A. Srikrishna, A. V. Reddy, and M. S. Nair, *Tetrahedron*, 1981, 37, 4543.
- 5 P. A. Wender and S. L. Eck, *Tetrahedron Lett.*, 1982, 1871, and references cited therein.
- 6 T. Hudlicky, J. M. Kutchan, S. R. Wilson, and D. T. Mao, J. Am. Chem. Soc., 1980, 102, 6351.

[†] The formation of *cis,transoid,cis*-stereochemistry by catalytic hydrogenation of (9) was not unexpected in view of the presence of 1,1'-substitution and has precedence (ref. 6). Another product, probably the *cis,cisoid,cis*-isomer of (10) was also formed during the reaction.